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Time series investigations on an experimental system driven by phase transitions
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In the present paper the analysis of an intermittent time series obtained from a nonlinear system is presented.
The setup is driven by phase transitions and has no external periodic driving. The observed states range from
stable ones over periodicity and intermittence to chaotic behavior. The data in the intermittent regime are
analyzed with respect to the optical shape, the frequency distribution of the laminar lengths, apd the
parameter. The results of these analyses are compatible with the interpretation of the presence of intermittence
type Il in the system under investigation. Additionaly the reconstruction of the radius dynamics of the experi-
mental data is attempted. The corresponding results also indicate type Il intermittence. Some weight is put on
figuring out the principal problems, arising in the reconstruction of thiedek-Sacker dynamics from a scalar
time series[S1063-651X97)04707-7

PACS numbes): 64.60.Ak, 47.20.Ky,44.96.c

[. INTRODUCTION diameter of the tube, its wall thickness, the liquid that is
vaporized, and, to some extent, the temperature of the cool-
There are several ways by which a system can change iisg bath. There is also some influence from the length of the
dynamical behavior. A special class of these paths are trarwater column and the pressure in the air buffer.
sitions from periodicity to chaos. And within this class there = Parameters which were varied systematically in the ex-
are three, which have been investigated in detail by Pomperiments are the spacing between the heating and the cool-
meau and Mannevill¢l]. These three transition types are ing region, the cooling temperature, the amount of water in
called intermittency I, 1, and Ill. Type | and type Il inter- the system, and the heating power. In this paper, however,
mittency are observed rather frequently in a large variety obnly the effects of changing the heating power are discussed,
nonlinear systemg2—6|. For type Il intermittence, however, while the other parameters were kept as constant as possible
only a few papers can be found on experimental re¢id|§,  during the experiments.
but, nevertheless, a variety of theoretical papers exist

[9,10,1. In the cases dealing with experimental systems, lIl. EXPERIMENTAL RESULTS
most of them are driven by an external, periodic force, ex-
cept the one reported by Herzel, Plath, and SvenggpiThe The principal scenario, described below, can be observed

present paper reports on observations on a nonlinear dynanwith all parameters fixed except the heating power. How-
cal system that is also not driven by an external force anéVver, for some parameter sets not all of the described states
which yields strong evidence for type Il intermittence. could be identified. In the case of low heating power, only

In Sec. Il the experimental setup is described. In Sec. Ilheat conduction from the hot to the cold region in the liquid
the experimental results are shown. Sections IV and V dednedium takes place. In this range of heating powers the heat-
with the different analyzing methods applied to the data. Inng region is not hot enough to enable vaporization of the
Sec. VI of the paper the results are summarized and a shofedium. When the power is raised above a certain threshold,
discussion is given. vaporization begins. The volume of the gaseous phase is
much larger than the one of the liquid, thus pushing the
position x of the meniscus between gas and liquid towards
the cooling region. At moderate heating power the posixion

The System Comprises a heating region’ in which a mesett!e-s at a static Vfilue. Neverthe-l-es-s, even with this static
dium (at present watgiis vaporized, and a cooling region, in Position of the meniscus, the equilibrium between the gas-
which condensation of the medium takes place. eous and the liquid phase is a dynamic one. The raising of

The quantity measured primarily is the pressure in the aifh® power over a second threshold leadshioperiodic os-
buffer (see Fig. 1, which in turn is a measure for the position
x of the phase boundary between the vapor phase and the heating region
liquid phase of the medium. As long as the pressure change
is kept small enough, the pressure is a good approximation
for the positionx. In the general case this relation is nonlin-
ear, however this results only in a distortion of the measured
pressure signal but not in the dynamics of the system.

In this setup there are a lot of relevant parameters, such as
the distance between the heating and the cooling region, the
material of the heated tub@ghe main property in this case
seems to be the thermal conductivity of the heated){uhe FIG. 1. Not to scale scheme of the experimental setup.

II. THE EXPERIMENT

cooling region
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relaminarization
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FIG. 4. Characteristic phases of an intermittent signal.

V. EXAMINATION OF THE INTERMITTENT
REGIME

A. Visual inspection of the time series

FIG. 2. (a) Periodic and(b) intermittent signal cuts. A typical cut of the intermittent time series is shown in
Fig. 4. It exhibits the three major components of each inter-

cillations of the meniscus. Again there is a certain range ofnittent time series. There is a laminar region, which is inter-
the power values for which these oscillatory modes areupted by an irregular burst and after this burst a new laminar
stable. In the case of even higher powers the oscillationphase occurs, which is preceded by a relaminariztion period
become unstable and are interrupted by bursts. The systemdsiring which the signal recovers from the irregular burst
in an intermittent state. With further increasing power thetowards the periodic oscillations. From the form of the signal
bursts become more and more frequent and finally the systuring the laminar phase type Il intermittency can be clearly
tem reaches a chaotic state. ruled out for the present case, since for this type a second

The parameter varied primarily is the heating power ofsubharmonic oscillation with increasing amplitude occurs
the heater, however it seems to be more reasonable to idef8], which cannot be found in the observed time series. So
tify the temperature of the heater as the control parameter dfom the standard intermittence models only types | and |l
the system. remain.

For the parameter set corresponding to the data reported Although this is not rigorous proof, the time series looks
in the following sections of the paper the transition from avery similar to those reported from systems exhibiting type Il
stable meniscus position to an oscillatory state occurred at imtermittence i.e., in the theoretical paper of Richetti, Argoul,
temperatureT=535 K. Intermittency was observed above and Arneodd10] or the experimental one of Herzel, Plath,
T=773 K and the chaotic regime was reached at923 K.  and Svenssofi7]. Some more information can be obtained
Representative signals for the periodic and the intermittentrom the analysis in the following subsection.
temperature range are shown in Fig. 2.

B. Distribution of the laminar length

IV. ANALYSIS OF THE TRANSITION BETWEEN THE In the standard cases of intermittent systems the scaling
STATIC AND THE PERIODIC STATE behavior of the length of the frequen&(N) of the laminar
. length N can be derived from the nature of the underlying
When the temperature rises above the thres_hold temperﬁynamical processes, i.e., in which way the oscillation loses
ture (in the present cas&s=535 K) an oscillation of the g stability.
position x starts. Within the experimental errors the fre-  gjce type Il can be excluded, as mentioned in the pre-
quency of the oscnlatlo_n is mdep_endent of '[he_dlfferenceceding paragraph, only type | and Il will be regarded now.
AT=T—Ts. However with increasin@T the amplitude of  Fqr tyne | intermittence the presence of a sharp cutoff length
the Qscnlatlon increases. Figure 3 shoyvs the amplitude 3R, is necessanN, . is the maximum laminar length that
function of AT. The dashed line is a fit of_a square root -5n be observed. In the normally given examplesRi)
function to the data. Such a functional relation between theisiribution is U shaped in the regioncN<N Figure 5
: : : : max-
amplitude of the oscillation and the control parametd@ris  gpows the distribution of the laminar length for the investi-

typical for a supercritical Hopf bifurcation. gated system measured at a heating poweP&f120 W.
b — + + + 4+
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FIG. 5. Log-log plot of the distribution of laminar lengtliat
FIG. 3. Amplitudes of the harmonic oscillation. P=120 W).
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This plot does not give any evidence for the presence of ¢ 250
cutoff length.

In the case of type Il intermittence normally g 200 1
P(N)~N~2 is expected9] which was also observed in the &
present experimeifll]. However, in most cases, this scaling Tg 150 ]
law cannot be seen in the spectra as shown in Fig. 5. But thi. ‘&
special power law is the result of the assumption of a uni- = 199 [ )
form reinjection probability after the burst. This argument £
holds too for type | intermittence; but the reinjection prob- 507 1
ability only affects the shape of the(N) distribution and s

o . .
not such features as the presence of a cutoff length. Thus th O 5 10 15 20 25 30 35 40 45 50

only remaining possibility of the three standard types is type laminar length [s]
[l intermittence, which will be looked at in some detail now.
Assuming a uniform reinjection probability is the most
simple assumption that can be made for the reinjection in
phase space. However this assumption does not reveal the Therefore the data are compatible with the intermittency
structure of the observed data. The next more complicateg/pe Il dynamics with the assumption of a nonuniform rein-
reinjection distributiorP(#,r) is to assume still isotropy for jection probability. However, this is not a handicap because
the angular coordinatffor a phase space with cylindrical the assumption of a uniform reinjection is too simple for real
coordinate ¢,r) systenj, but a normal distribution around processes. Also in the experiment of Herzel, Plath, and

FIG. 6. Distribution of laminar lengths frequency.

¢ in ther direction Svenssori7] and in the theoretical investigation of Richetti,
(c—r)2 Argoul, Arneodo[10], nonuniform reinjection probabilities
P(r)~rex;{—?). are necessary to describe the distribution of the laminar
e length.

It should be mentioned at this point that the above as-
sumption about the reinjection probability is not the only one
that is compatible with the data. For example, if the distri-
fsg=(1+p)r +r3 bution used by Herzel, Plath, and Svensgbhis applied to

n+1 M) Ty . .
the data, a good agreement is found, too. However this case

This map has to be iterated starting with the vatye IS, to some extent, still one step further away from the as-
given by the reinjection mechanism. The laminar phase last8umption of uniformity since the isotropy in tttecoordinate
N iterations untilr ., ; exceeds a given valuR. After inte- IS given up and a normally distributed reinjection around one
gration the following relation between the starting value point in phase space is assumed.
andN can be found:

The iteration map corresponding to type Il intermittence
is given by

12 C. Mean laminar length and y parameter
r(N)={—| , with fy=(u+R?»e**N-R? _ _ _ _ _
fn For intermittence | and Il theoretical calculations give an
dr| u¥3(fy+R2) expression for the mean laminar lengttthat is int_jgper)dent
=lgNlT T of the special functional dependence of the reinjection pro-
N 1

cess. The corresponding relation for type Ilgv,u‘ .

By simple phase space considerations it can be found th&owever, it is rather problematic to determinefrom the
the probabilityP(N), to find a certain number of iterations, observed time series, since by depending on the reinjection
is related to the reinjection probabili§(r) by mechanism there exists a rather large probability for short
laminar length. The problem of determining the length of the

B dr laminar length consists of at least two contributions. First it
P(N)=P(r) dN| is necessary to observe a minimum number of oscillations in
order to see a laminar period. The second aspect is due to the
Combining the last two equations yields problem to determine exactly when the relaminarization is
, finished and the laminar period starts. Therefore the errors in
M\S e 2 2 these rather frequent short laminar lengths are quite large.
P(N)~ (fy+R?) £e (JalTy =012 o () A more robust quantity is the so calledparametef12]

that is related tor. The y parameter measures the fraction of
This is the expression for the probability to find a laminarthe turbulent phases compared to the length of the whole
length N when the reinjection process is isotropic in the time series
coordinate but normally distributed in thedirection around -
a fixed distances. Figure 6 shows the fit of Eq1) to the with B=(mean length of burs}s
observed daté+=experimental data, solid lir€fit of type
Il intermittency model. It can be seen that the fit describes
the observed data in a satisfactory manner. and
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FIG. 7. Temperature dependence of the mean burst Ie@hs ) )
FIG. 9. Time series(upper ploj and envelope sampled by

maxima (lower ploy.

,B_+T_= ttotal
(number of bursts r=1 and thus the relatiom~ ! is obtained for the ob-
_ served data.
_ tturbulent_ B
- trotal _,8_+T D. Examination of the r dynamics via first-return maps

In cases where systems are driven by an external periodi-
From the experiment it can be found thEB near|y cal Signal, a canonical choice for the Sampling frequency for

constant for moderate changes in the heating temperatufePoincareplot is given by the frequency of the drive. In the
. . — . present case however there is no external periodic dihe
(see Fig. 7. Assuming furtherr=au™" gives

system is driven by the energy flow between the heater and

— -1 the cooling reservojr The only remaining “clock genera-
Y )= B N tor” is given by the frequency of the faster oscillation during
B_+T_ the laminar phases. The lower part of Fig. 9 shows such a

plot of the envelope of the laminar phase, sampled at the
d|\! instances of the maxima of the faster oscillation. Plotting the
' maximumx,, 1 against maximunx,, results in the so called
first-return map(Fig. 10. This plot shows a spiral-like be-
with havior as is typical for type Il intermittence. Extracting from
such a plot the corresponding values and plotting, 1
_ againstr,, should reveal the radius dynamics of the system
, B=const. 2 under investigation. In practice, however, this attempt is
somewhat problematic for reasons that are described in some
d detail now.
For this purpose the map Keark-Sacker bifurcation,
which is essential for type Il intermittency, is iterated

So by fitting Eq.(2) to the experimentally determine
y-parameters results in a value farIn the experiment the
relative difference T—T,)/ T, is interpreted as the control
parametelu; i.e., since the measured quantities grand T Mher=(1+p)r,+ arﬁ, 3)
the critical temperaturd@ ., is also obtained from the fit. A
corresponding plot is shown in Fig. 8. Within the error bars

Xn+lw N
0.15 — 200
- 0.10 — i
')’:"
| 0 gfm
¥ 4
0.05 — ] g/
-200 — x
0‘00 ‘ T | T ‘ T [ T I
0.00 0.02 0.04 0.06 0.08 010 W : : : : : ,
FIG. 8. Fit of Eq. 2 to the experimentaly parameters -200 0 200 X

(r=1.07, d=0.49, T, =773.75 K. The error bars correspond to
temperature variation during the laminar phases. FIG. 10. First-return map of the laminar signal.
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20 b)

Xn )_( r,sin( ¢o+no)

oot dot (n+1)61)° ©

Xn+1

_ 104 Inspecting the reconstructed spiral plot, it is recognized

4 that only one point is located in the upper left and the lower

14 right quadrant per spiral turn. This is due to the fact that

these quadrants are populated by those points wherg,the

0 T T T } data change sign. It is also recognized that the spiral is elon-
o gated along the diagonal. A possible correction is therefore

given by rotating and stretching the original reconstruction.
FIG. 11. (a) Poincareplot and(b) radius dynamics of the iter- By such a linear mapping the plots can be improved; some-

ated Némark-Sacker-mapEqg. (3)]. thing like the plots shown in Figs. 1@ and 12d) seems to
be the optimum. The remaining “bumpy” structure in the
brs1= bnt+ 6+0(r3). (4)  Tnplots expresses the fact that a nonlinear error is introduced

by replacing cos,) by sin(f,.1). Such behavior is also seen
. . _ in the experimental data of Sreenivasan and Ramshankar
One obtains Cartesian coordinates by [12].
Some further improvement can be achieved, evaluating
only the data corresponding to a fixed direction in the
5 (r,0) plane. Applying such a correction to the experimental
r, data of Fig. 12, Fig. 1@ is obtained. The points still
exhibit some scattering. One reason for this is that in accor-
Figure 11 shows the corresponding plotsygrvs x, and  dance with the exact Nimark-Sacker bifurcation dynamics,
rh+1 VS r,. Now it is assumed that in an experiment the different from Eq.(4), 6= ¢, 1— ¢, is not fixed but slightly
observed data are given by thg values from Eq.(5). A varying with n. For that reason, in the evaluation, not only
reconstruction of the Poincapdot is made by plotting, vs points for a fixed direction can be used but a small range
Xn+1 [see Fig. 1Ba)]. It is clearly seen that the plot re- around this direction has to be accepted for the evaluation.
sembles the original spiral, but it exhibits strong distortions.For that reason, in Fig. 18) a smoothing for neighboring
Extractingr,, values from this spiral results in Fig. 2. points is applied. In Fig. 18) ther, dynamics of Eq(3) are
The reason for this distortions is the transition from the poinffitted to the corrected data. As one can see, the data is within
series given by the coordinate pairs from E5). to the one the errors compatible with the curve given by theitdark-
given by the pairs Sacker dynamics.

(xn) _( r.sin( ¢o+no)
Ynl \Fncod ¢po+n6)

-2 R

<
¥
s 5
- T T T T T T
5 2 s N ,? ’ FIG. 12. 3 First-return map reconstructed ac-
n n . . .
cording to Eq.(6) and (b) corresponding radius
dynamics;(c) and(d) show corrected versions of
104 4 109 4 (a) and (b).
8 8 -
6 - 6 -
g 4 -
24 2
0 T T T T 1 0 T T T T 1
0 2 4 6 8 10 0 2 4 6 8 10
r r
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w0 0 0 ?re in ggreen_‘nent with the interpretation of the presence of
250 ] o 950 ] 250 -] fit ype Il |nterm.|ttence. .
. o . o . o However, it has to be mentioned that these analyses are
2007 2007 o 7] not rigorous proof for intermittence I, it was solely shown
190 d?d“ 150 655? 150 that the data do not contradict the interpretation of intermit-
100 o 100 $ 100 — tence type II. This is a general problem of experimental data
s0 ] rbnnnfp s0 4 % 50 and not specific to the present system under investigation.
0_|I-j|n|-mwO_M-m-m o —— Butastherearefo.urd|f.feren.ta_spects_thathaveall been
05His2 050155 0 W0 20 20 shown to be compatible with this kind of intermittence, there

m m m is some evidence that type Il is really present in this case.

Since up to now no theoretical model to describe the sys-

FIG. 13. (&) Original and(b) smoothedr, and (c) radius dy-  tem could be formulated, it is impossible to cross-check the

namics for smoothed data @) including the Némark-Sacker fit experimental results by numerical calculations.
[Ea. 3)].
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