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Time series investigations on an experimental system driven by phase transitions

M. Frank and M. Schmidt
Physikalisches Institut der Universita¨t Erlangen-Nu¨rnberg, Erwin-Rommel-Strasse 1a, 91058 Erlangen, Germany

~Received 6 February 1997!

In the present paper the analysis of an intermittent time series obtained from a nonlinear system is presented.
The setup is driven by phase transitions and has no external periodic driving. The observed states range from
stable ones over periodicity and intermittence to chaotic behavior. The data in the intermittent regime are
analyzed with respect to the optical shape, the frequency distribution of the laminar lengths, and theg
parameter. The results of these analyses are compatible with the interpretation of the presence of intermittence
type II in the system under investigation. Additionaly the reconstruction of the radius dynamics of the experi-
mental data is attempted. The corresponding results also indicate type II intermittence. Some weight is put on
figuring out the principal problems, arising in the reconstruction of the Ne�mark-Sacker dynamics from a scalar
time series.@S1063-651X~97!04707-7#

PACS number~s!: 64.60.Ak, 47.20.Ky,44.90.1c
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I. INTRODUCTION

There are several ways by which a system can chang
dynamical behavior. A special class of these paths are t
sitions from periodicity to chaos. And within this class the
are three, which have been investigated in detail by Po
meau and Manneville@1#. These three transition types a
called intermittency I, II, and III. Type I and type III inter
mittency are observed rather frequently in a large variety
nonlinear systems@2–6#. For type II intermittence, however
only a few papers can be found on experimental results@7,8#,
but, nevertheless, a variety of theoretical papers e
@9,10,1#. In the cases dealing with experimental system
most of them are driven by an external, periodic force,
cept the one reported by Herzel, Plath, and Svensson@7#. The
present paper reports on observations on a nonlinear dyn
cal system that is also not driven by an external force
which yields strong evidence for type II intermittence.

In Sec. II the experimental setup is described. In Sec.
the experimental results are shown. Sections IV and V d
with the different analyzing methods applied to the data.
Sec. VI of the paper the results are summarized and a s
discussion is given.

II. THE EXPERIMENT

The system comprises a heating region, in which a m
dium ~at present water! is vaporized, and a cooling region, i
which condensation of the medium takes place.

The quantity measured primarily is the pressure in the
buffer ~see Fig. 1!, which in turn is a measure for the positio
x of the phase boundary between the vapor phase and
liquid phase of the medium. As long as the pressure cha
is kept small enough, the pressure is a good approxima
for the positionx. In the general case this relation is nonli
ear, however this results only in a distortion of the measu
pressure signal but not in the dynamics of the system.

In this setup there are a lot of relevant parameters, suc
the distance between the heating and the cooling region
material of the heated tube~the main property in this cas
seems to be the thermal conductivity of the heated tube!, the
561063-651X/97/56~3!/2423~6!/$10.00
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diameter of the tube, its wall thickness, the liquid that
vaporized, and, to some extent, the temperature of the c
ing bath. There is also some influence from the length of
water column and the pressure in the air buffer.

Parameters which were varied systematically in the
periments are the spacing between the heating and the c
ing region, the cooling temperature, the amount of water
the system, and the heating power. In this paper, howe
only the effects of changing the heating power are discus
while the other parameters were kept as constant as pos
during the experiments.

III. EXPERIMENTAL RESULTS

The principal scenario, described below, can be obser
with all parameters fixed except the heating power. Ho
ever, for some parameter sets not all of the described st
could be identified. In the case of low heating power, on
heat conduction from the hot to the cold region in the liqu
medium takes place. In this range of heating powers the h
ing region is not hot enough to enable vaporization of
medium. When the power is raised above a certain thresh
vaporization begins. The volume of the gaseous phas
much larger than the one of the liquid, thus pushing
position x of the meniscus between gas and liquid towa
the cooling region. At moderate heating power the positiox
settles at a static value. Nevertheless, even with this s
position of the meniscus, the equilibrium between the g
eous and the liquid phase is a dynamic one. The raising
the power over a second threshold leads to~bi!periodic os-

FIG. 1. Not to scale scheme of the experimental setup.
2423 © 1997 The American Physical Society
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2424 56M. FRANK AND M. SCHMIDT
cillations of the meniscus. Again there is a certain range
the power values for which these oscillatory modes
stable. In the case of even higher powers the oscillati
become unstable and are interrupted by bursts. The syste
in an intermittent state. With further increasing power t
bursts become more and more frequent and finally the
tem reaches a chaotic state.

The parameter varied primarily is the heating power
the heater, however it seems to be more reasonable to i
tify the temperature of the heater as the control paramete
the system.

For the parameter set corresponding to the data repo
in the following sections of the paper the transition from
stable meniscus position to an oscillatory state occurred
temperatureT5535 K. Intermittency was observed abov
T5773 K and the chaotic regime was reached atT5923 K.
Representative signals for the periodic and the intermit
temperature range are shown in Fig. 2.

IV. ANALYSIS OF THE TRANSITION BETWEEN THE
STATIC AND THE PERIODIC STATE

When the temperature rises above the threshold temp
ture ~in the present caseTS5535 K! an oscillation of the
position x starts. Within the experimental errors the fr
quency of the oscillation is independent of the differen
DT5T2TS . However with increasingDT the amplitude of
the oscillation increases. Figure 3 shows the amplitude
function of DT. The dashed line is a fit of a square ro
function to the data. Such a functional relation between
amplitude of the oscillation and the control parameterDT is
typical for a supercritical Hopf bifurcation.

FIG. 2. ~a! Periodic and~b! intermittent signal cuts.

FIG. 3. Amplitudes of the harmonic oscillation.
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V. EXAMINATION OF THE INTERMITTENT
REGIME

A. Visual inspection of the time series

A typical cut of the intermittent time series is shown
Fig. 4. It exhibits the three major components of each int
mittent time series. There is a laminar region, which is int
rupted by an irregular burst and after this burst a new lami
phase occurs, which is preceded by a relaminariztion pe
during which the signal recovers from the irregular bu
towards the periodic oscillations. From the form of the sign
during the laminar phase type III intermittency can be clea
ruled out for the present case, since for this type a sec
subharmonic oscillation with increasing amplitude occu
@9#, which cannot be found in the observed time series.
from the standard intermittence models only types I and
remain.

Although this is not rigorous proof, the time series loo
very similar to those reported from systems exhibiting type
intermittence i.e., in the theoretical paper of Richetti, Argo
and Arneodo@10# or the experimental one of Herzel, Plat
and Svensson@7#. Some more information can be obtaine
from the analysis in the following subsection.

B. Distribution of the laminar length

In the standard cases of intermittent systems the sca
behavior of the length of the frequencyP(N) of the laminar
length N can be derived from the nature of the underlyi
dynamical processes, i.e., in which way the oscillation lo
its stability.

Since type III can be excluded, as mentioned in the p
ceding paragraph, only type I and II will be regarded no
For type I intermittence the presence of a sharp cutoff len
Nmax is necessary.Nmax is the maximum laminar length tha
can be observed. In the normally given examples theP(N)
distribution is U shaped in the region 0,N,Nmax. Figure 5
shows the distribution of the laminar length for the inves
gated system measured at a heating power ofP5120 W.

FIG. 4. Characteristic phases of an intermittent signal.

FIG. 5. Log-log plot of the distribution of laminar lengths~at
P5120 W!.
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56 2425TIME SERIES INVESTIGATIONS ON AN . . .
This plot does not give any evidence for the presence o
cutoff length.

In the case of type II intermittence normal
P(N);N22 is expected@9# which was also observed in th
present experiment@11#. However, in most cases, this scalin
law cannot be seen in the spectra as shown in Fig. 5. But
special power law is the result of the assumption of a u
form reinjection probability after the burst. This argume
holds too for type I intermittence; but the reinjection pro
ability only affects the shape of theP(N) distribution and
not such features as the presence of a cutoff length. Thus
only remaining possibility of the three standard types is ty
II intermittence, which will be looked at in some detail now

Assuming a uniform reinjection probability is the mo
simple assumption that can be made for the reinjection
phase space. However this assumption does not revea
structure of the observed data. The next more complica
reinjection distributionP(u,r ) is to assume still isotropy fo
the angular coordinate@for a phase space with cylindrica
coordinate (u,r ) system#, but a normal distribution around
c in the r direction

P~r !;rexpS 2
~c2r !2

2 s2 D .

The iteration map corresponding to type II intermitten
is given by

r n115~11m!r n1r n
3 .

This map has to be iterated starting with the valuer 1
given by the reinjection mechanism. The laminar phase l
N iterations untilr N11 exceeds a given valueR. After inte-
gration the following relation between the starting valuer
andN can be found:

r ~N!5S m

f N
D 1/2

, with f N5~m1R2!e2mN2R2

⇒U dr

dNU5m3/2~ f N1R2!

f N
3/2 .

By simple phase space considerations it can be found
the probabilityP(N), to find a certain number of iterations
is related to the reinjection probabilityP(r ) by

P~N!5P~r !U dr

dNU.
Combining the last two equations yields

P~N!;~ f N1R2!S m

f N
D 2

e2 ~Am/ f N2c!2/2 s2
~1!

This is the expression for the probability to find a lamin
length N when the reinjection process is isotropic in theu
coordinate but normally distributed in ther direction around
a fixed distancec. Figure 6 shows the fit of Eq.~1! to the
observed data~15experimental data, solid line5fit of type
II intermittency model!. It can be seen that the fit describ
the observed data in a satisfactory manner.
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Therefore the data are compatible with the intermitten
type II dynamics with the assumption of a nonuniform re
jection probability. However, this is not a handicap becau
the assumption of a uniform reinjection is too simple for re
processes. Also in the experiment of Herzel, Plath, a
Svensson@7# and in the theoretical investigation of Richet
Argoul, Arneodo@10#, nonuniform reinjection probabilities
are necessary to describe the distribution of the lami
length.

It should be mentioned at this point that the above
sumption about the reinjection probability is not the only o
that is compatible with the data. For example, if the dis
bution used by Herzel, Plath, and Svensson@7# is applied to
the data, a good agreement is found, too. However this c
is, to some extent, still one step further away from the
sumption of uniformity since the isotropy in theu coordinate
is given up and a normally distributed reinjection around o
point in phase space is assumed.

C. Mean laminar length and g parameter

For intermittence I and II theoretical calculations give

expression for the mean laminar lengtht̄ that is independen
of the special functional dependence of the reinjection p

cess. The corresponding relation for type II ist̄ ;m21.

However, it is rather problematic to determinet̄ from the
observed time series, since by depending on the reinjec
mechanism there exists a rather large probability for sh
laminar length. The problem of determining the length of t
laminar length consists of at least two contributions. Firs
is necessary to observe a minimum number of oscillation
order to see a laminar period. The second aspect is due t
problem to determine exactly when the relaminarization
finished and the laminar period starts. Therefore the error
these rather frequent short laminar lengths are quite larg

A more robust quantity is the so calledg parameter@12#

that is related tot̄ . Theg parameter measures the fraction
the turbulent phases compared to the length of the wh
time series

with b̄5~mean length of bursts!

and

FIG. 6. Distribution of laminar lengths frequency.
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2426 56M. FRANK AND M. SCHMIDT
b̄1 t̄ 5
t total

~number of bursts!

⇒g5
t turbulent

t total
5

b̄

b̄1 t̄
.

From the experiment it can be found thatb̄ is nearly
constant for moderate changes in the heating tempera
~see Fig. 7!. Assuming furthert̄ 5am2r gives

g~m!5
b̄

b̄1 t̄
5F11S t̄

b̄
D G21

5S 11
a

cm r D 21

5S 11
d

m r D 21

,

with

d5
a

c
, b̄5const. ~2!

So by fitting Eq. ~2! to the experimentally determine
g-parameters results in a value forr . In the experiment the
relative difference (T2Tcr)/Tcr is interpreted as the contro
parameterm; i.e., since the measured quantities areg andT
the critical temperatureTcr is also obtained from the fit. A
corresponding plot is shown in Fig. 8. Within the error ba

FIG. 7. Temperature dependence of the mean burst lengthsb̄ .

FIG. 8. Fit of Eq. 2 to the experimentalg parameters
(r 51.07, d50.49, Tcr5773.75 K!. The error bars correspond t
temperature variation during the laminar phases.
re

r 51 and thus the relationt̄ ;m21 is obtained for the ob-
served data.

D. Examination of the r dynamics via first-return maps

In cases where systems are driven by an external peri
cal signal, a canonical choice for the sampling frequency
a Poincare´ plot is given by the frequency of the drive. In th
present case however there is no external periodic drive~the
system is driven by the energy flow between the heater
the cooling reservoir!. The only remaining ‘‘clock genera
tor’’ is given by the frequency of the faster oscillation durin
the laminar phases. The lower part of Fig. 9 shows suc
plot of the envelope of the laminar phase, sampled at
instances of the maxima of the faster oscillation. Plotting
maximumxn11 against maximumxn results in the so called
first-return map~Fig. 10!. This plot shows a spiral-like be
havior as is typical for type II intermittence. Extracting fro
such a plot the correspondingr n values and plottingr n11
againstr n should reveal the radius dynamics of the syst
under investigation. In practice, however, this attempt
somewhat problematic for reasons that are described in s
detail now.

For this purpose the map Ne�mark-Sacker bifurcation,
which is essential for type II intermittency, is iterated

r n115~11m!r n1arn
3 , ~3!

FIG. 9. Time series~upper plot! and envelope sampled b
maxima~lower plot!.

FIG. 10. First-return map of the laminar signal.



he

-
ns

in

ed
er
at
e
lon-
ore
n.
e-

e
ced
n
nkar

ting
he
tal
l
or-
,

ly
ge

ion.

ithin

Sacker dynamics.

-

56 2427TIME SERIES INVESTIGATIONS ON AN . . .
fn115fn1u1O~r n
2!. ~4!

One obtains Cartesian coordinates by

S xn

yn
D 5S r nsin~f01nu!

r ncos~f01nu!
D ~5!

Figure 11 shows the corresponding plots foryn vs xn and
r n11 vs r n . Now it is assumed that in an experiment t
observed data are given by thexn values from Eq.~5!. A
reconstruction of the Poincare´ plot is made by plottingxn vs
xn11 @see Fig. 12~a!#. It is clearly seen that the plot re
sembles the original spiral, but it exhibits strong distortio
Extracting r n values from this spiral results in Fig. 12~b!.
The reason for this distortions is the transition from the po
series given by the coordinate pairs from Eq.~5! to the one
given by the pairs

FIG. 11. ~a! Poincare´ plot and~b! radius dynamics of the iter
ated Ne�mark-Sacker-map@Eq. ~3!#.
.

t

S xn

xn11
D 5S r nsin~f01nu!

r n11sin@f01~n11!u#
D . ~6!

Inspecting the reconstructed spiral plot, it is recogniz
that only one point is located in the upper left and the low
right quadrant per spiral turn. This is due to the fact th
these quadrants are populated by those points where thxn
data change sign. It is also recognized that the spiral is e
gated along the diagonal. A possible correction is theref
given by rotating and stretching the original reconstructio
By such a linear mapping the plots can be improved; som
thing like the plots shown in Figs. 12~c! and 12~d! seems to
be the optimum. The remaining ‘‘bumpy’’ structure in th
r n plots expresses the fact that a nonlinear error is introdu
by replacing cos(un) by sin(un11). Such behavior is also see
in the experimental data of Sreenivasan and Ramsha
@12#.

Some further improvement can be achieved, evalua
only the data corresponding to a fixed direction in t
(r ,u) plane. Applying such a correction to the experimen
r n data of Fig. 12, Fig. 13~a! is obtained. The points stil
exhibit some scattering. One reason for this is that in acc
dance with the exact Ne�mark-Sacker bifurcation dynamics
different from Eq.~4!, u5fn112fn is not fixed but slightly
varying with n. For that reason, in the evaluation, not on
points for a fixed direction can be used but a small ran
around this direction has to be accepted for the evaluat
For that reason, in Fig. 13~b! a smoothing for neighboring
points is applied. In Fig. 13~c! the r n dynamics of Eq.~3! are
fitted to the corrected data. As one can see, the data is w
the errors compatible with the curve given by the Ne�mark-
-

f

FIG. 12. a! First-return map reconstructed ac
cording to Eq.~6! and ~b! corresponding radius
dynamics;~c! and~d! show corrected versions o
~a! and ~b!.
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VI. DISCUSSION

In Sec. V it was shown that different analyses of the d
obtained from the experimental system under investiga

FIG. 13. ~a! Original and~b! smoothedr m and ~c! radius dy-
namics for smoothed data of~b! including the Ne�mark-Sacker fit
@Eq. ~3!#.
e

s.

gn

ur
a
n

are in agreement with the interpretation of the presence
type II intermittence.

However, it has to be mentioned that these analyses
not rigorous proof for intermittence II, it was solely show
that the data do not contradict the interpretation of interm
tence type II. This is a general problem of experimental d
and not specific to the present system under investigat
But as there are four different aspects that have all b
shown to be compatible with this kind of intermittence, the
is some evidence that type II is really present in this cas

Since up to now no theoretical model to describe the s
tem could be formulated, it is impossible to cross-check
experimental results by numerical calculations.
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